2.2 Electrical Installation

2.2.1 Description of Main Circuit Terminals

Table 2-1 Description of Main Circuit Terminals of AC Drive

Terminal	Name	Description
$\mathrm{R}, \mathrm{S}, \mathrm{T}$	Three-phase power supply input terminals	Connect the three-phase power supply
R, T	Single-phase power supply input terminals	Connect the single-phase power supply
P1, (+)	Connecting terminals of DC reactor	Connect DC reactor
$(+),(-)$	Positive and negative terminal of DC bus	Common DC bus input point
$(+)$, PB	Connecting terminals of braking resistor	Connect the braking resistor for the AC drive
$\mathrm{U}, \mathrm{V}, \mathrm{W}$	AC drive output terminals	Connect a three-phase motor
PE	Grounding terminal	Must be grounded

2.2.2 Wiring of AC Drive Main Circuit

Figure 2-3 Wiring of AC Drive Main Circuit

2.2.3 Description of Control Circuit Terminals

Figure 2-4 Terminal Arrangement of Control Circuit

Table 2-2 FU9000D Description of the Use of Control Circuit Terminals

Type	Terminal	Name	Function Description
Power supply	+10V-GND	External +10V power supply	Provide +10 V power supply to external unit. Generally, it provides power supply to external potentiometer with resistance range of $1-5 \mathrm{k} \Omega$. Max. output current: 10 mA
	+24V-COM	External +24 V power supply	Provide +24 V power supply to external unit. Generally, it provides power supply to DI/DO terminals and external sensors. Max. output current: 200 mA
	OP	External power input terminal	Factory default: connect with +24 V . When using external signal to drive DI1~DI5, OP need to connect with external power, disconnect with +24 V terminal.
Analog input	AI1-GND AI2-GND	Analog input terminal	1. Input range: $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$ 2. AI1 decided by jumper J10 on the control board 3. AI2 decided by jumper J9 on the control board
Digital input	DI1	Digital input 1	1. Switch input terminal, work with $+24 \mathrm{~V} \& \mathrm{COM}$ to form optical coupling isolation input 2. Input resistance: $2.4 \mathrm{k} \Omega$ 3. Voltage range for level input: $9-30 \mathrm{~V}$
	DI2	Digital input 2	
	DI3	Digital input 3	
	DI4	Digital input 4	
	DI5	High speed pulse input	Besides the feature of DI1~DI4, can be high speed pulse input channel. Max. input frequency: 100 kHz
Analog output	$\begin{aligned} & \text { AO1-GND } \\ & \text { AO2-GND } \end{aligned}$	Analog output terminal	1. Output range: $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$ 2. AO1 decided by jumper J 7 on the control board 3. AO2 decided by jumper J4 on the control board
Digital ouput	FM-COM	High speed pulse output	It is limited by P5-00 (FM terminal output mode selection). When used as high speed pulse output, max frequency 100 kHz ; can be used as integrated electric pole open circuit output as well.
Relay output	T/A-T/B	NC terminal	Contact driving capacity: $250 \mathrm{VAC}, 3 \mathrm{~A}, \cos \phi=0.4$ 30VDC, 1A
	T/A-T/C	NO terminal	
	P/A-P/B	NC terminal	
	P/A-P/C	NO terminal	

2.2.4 Wiring of AC Drive Control Circuit

Figure 2-5 Wiring Mode of the AC Drive Control Circuit

- All FU9000D series AC drives have the same wiring mode. The figure here shows the wiring of 3 phase 380 VAC drive. © indicates main circuit terminal, while \circ indicates control circuit terminal.

Description of Wiring of Signal Terminals

1) Wiring of AI terminals:

Weak analog voltage signals are easy to suffer external interference, and therefore the shielded cable must be used and the cable length must be less than 20 m , as shown in figure 2-6. In some situations where the analog signal is severely disturbed, a filter capacitor or ferrite core should be added to the analog signal source side, as shown in Figure 2-7.

Figure 2-6 Wiring Mode of AI Terminals

Figure 2-7 Install Filter Capacitor or Ferrite Magnetic Core
2) Wiring of DI terminals:

Generally, select shielded cable no longer than 20 m . When active driving is adopted, necessary filtering measures shall be taken to prevent the interference to the power supply. It is recommended to use the contact control mode.

- A SINK wiring

Figure 2-8 Wiring in SINK Mode

Chapter 3 Operation Display and Application Examples

3.1 Operation Panel

You can modify the parameters, monitor the working status and start or stop the FU9000D by operating the operation panel, as shown in the following figure.

Figure 3-1 Diagram of the Operation Panel

Description of Indicators

RUN: ON indicates that the AC drive is in the running state, and OFF indicates
that the AC drive is in the stop state.
LOCAL: It indicates whether the AC drive is operated by means of operation panel, terminals or communication.

OLOCAL : OFF	PANEL CONTROL MODE
LOCAL : NORMAL ON	TERMINAL CONTROL MODE
LOCAL : FLASH	COMMUNICATION CONTROL MODE

REV: Indicates whether the AC drive is controlled by panel, terminal or communication.

- means indicators on. O means indicators off.
$\stackrel{\mathrm{Hz}}{\mathrm{O}}-\sqrt{\mathrm{RPM}}-\mathrm{A}-\mathrm{O}^{\mathrm{Z}}-\mathrm{O}$: A Unit of current
$\stackrel{\mathrm{Hz}}{\mathrm{O}}-\mathbb{R P M}-\mathrm{O}-\mathrm{O}^{\mathrm{O}}-\mathrm{V}: ~ \mathrm{~V}$ Unit of voltage

Digital Display
The 5-digit LED display is able to display the set frequency, output frequency, monitoring data and fault codes.

Table 3-1 Description of keys on the operation panel		
Key	Name	Function
$\frac{\text { PRG }}{\text { ESC }}$	Programme	Enter or exit level 1 menu.
DATA	Confirm	Enter the menu interfaces level by level, and confirm the parameter setting.
-	Increase	Increase data or function code.
\checkmark	Decrease	Decrease data or function code.
$\frac{\gg}{\text { SHIFT }}$	Shift	Select the displayed parameters in turn in the stop or running state, and select the digit to be modified when modifying parameters.
RUN	Run	Start the AC drive in the operation panel control mode.
STOP	Stop/ Reset	Stop the AC drive when it is in the running state; perform the reset operation when in the fault state. The functions of this key are restricted to P7-02.
	Multifunction	Function selection according to P7-01, can be defined as command source or direction.
	Menu selection	Redirect among menu modes according to PP-03.

3.2 Viewing and Modifying Function Codes

The operation panel of the FU9000D adopts three-level menu.
The three-level menu consists of function code group (Level I), function code (Level II), and function code setting value (level III), as shown in the following figure.

Figure 3-2 Level III Menu Operation Chart
Note: You can return to Level II menu from Level III menu by pressing PRG key or DATA key.

- After press DATA key , the system saves the parameter setting, and goes back to Level II menu and shifts to the next function code.
- After press PRG key, the system directly returns to Level II menu and remains at the current function code, not save the parameter setting.

Example: change P3-02 from 10.00 Hz to 15.00 Hz .

Figure 3-3 Example of changing the parameter value
In Level III menu, if the parameter has no flashing digit, the parameter cannot be modified. Maybe:

- The displayed function code is only readable, such as AC drive model, actually detected parameter and running record parameter.
- The displayed function code is only readable in running state, need to stop running and change parameter.

3.3 Structure of Function Codes

Function Code Group	Function	Description
P0-PP	Standard AC drive function code group	Compatible with FU9000D series function codes and adding some function codes.
D0-DC	Advanced function code group	Multi-motor parameters, AI/AO correction, optimization control, PLC card extension function setting.

U0- U3	Running state function code group	Display of AC drive basic parameters

Table 3-2 Structure of Function Codes
In the function code display state, select the required function code pressing the key \square or \qquad , as shown in the following figure.

Figure 3-4 Quick View of Function Codes

PP-02 is used to determine whether group D and group U are displayed.

| Function Code | Parameter Name | | Parameter Name |
| :--- | :--- | :--- | :--- | Default | |
| :--- |
| PP-02 |

3.4 Definition and Operation of the Multifunction Key

You can define the function (command source switchover or rotation direction switchover) of the multifunction key in P7-01. For details, see the description of P7-01.

3.5 Viewing Status Parameters

In the stop or running state, you can press SHIFT key on the operation panel to display status parameters. Whether parameters are displayed is determined by the 16 bits of values converted from the values of P7-03, P7-04. and P7-05 in the binary format.

P7-05	LED display stop parameters	Bit00: Set frequency (Hz)	Bit07: Count value Bit08: Length value Bit09: PLC stage Bit10: Load speed Bit11: PID setting Bit12: PULSE setting frequency (kHz)	33
		Bit01: Bus voltage (V)		
		Bit02: DI input status		
		Bit03: DO output status		
		Bit04: AI1 voltage (V)		
		Bit05: AI2 voltage (V)		
		Bit06: AI3 voltage (V)		

In running state, five running status parameters are displayed by default, and you can set whether other parameters are displayed by setting P7-03 and P7-04, as listed in the following table.

P7-03	LED display running parameters 1	Bit00: Running frequency $1(\mathrm{~Hz})$ Bit01: Set frequency (Hz) Bit02: Bus voltage (V) Bit03: Output voltage (V) Bit04: Output current (A) Bit05: Output power (kW) Bit06: Output torque (\%) Bit07: DI input status	Bit08: DO output status Bit09: AI1voltage (V) Bit10: AI2voltage (V) Bit11: AI3voltage (V) Bit12: Count value Bit13: Length value Bit14: Load speed display Bit15: PID setting	1F
P7-04	LED display running parameters 2	Bit00: PID feedback Bit01: PLC stage Bit02: Pulse setting frequency (kHz) Bit03: Running frequency $2(\mathrm{~Hz})$ Bit04: Remaining running time Bit05: AI1 voltage before correction Bit06: AI2 voltage before correction Bit07: AI3 voltage before correction	Bit08: Linear speed Bit09: Current power on- time (Hour) Bit10: Current running time (Minute) Bit11: Pulse setting frequency (Hz) Bit12: Communication setting value Bit13: Encoder feedback speed (Hz) Bit14: Main frequency X display (Hz) Bit15: Auxiliary frequency Y display (Hz)	0

When the AC drive is powered on again after power failure, the parameters that are selected before power failure are displayed.

Select the required parameters by pressing. Set the values of the parameters by referring to the following example.

1. Determine the parameters to be displayed.

Running frequency, Bus voltage, Output voltage, Output current, Output frequency, Output torque, PID feedback,
Encoder feedback speed
2. Set the binary data.

P7-03: 000000000111 1101B, P7-04: 001000000000 0001B
3. Convert the binary data to hexadecimal data:

P7-03: 007DH, P7-04: 2001H
The values displayed on the operation panel are respectively H. 1043 and H .2001 respectively for P7-03 and P7-04.

Chapter 4 Function Parameter Table

If PP-00 is set to a non-zero number, parameter protection is enabled. You must enter the correct user password to enter the menu.
To cancel the password protection function, enter with password and set $\mathrm{PP}-00=0$.
Group P and Group D are standard function parameters. Group U includes the monitoring function parameters.
The symbols in the function code table are described as follows:
" $\mathrm{\sim}$ " : It is possible to modify the parameter with the drive in the stop and in the Run status.
" \star " : It is not possible to modify the parameter with the drive in the Run status.
$" \bullet "$: The parameter is the actual measured value and cannot be modified.
"*" : The parameter is a factory parameter and can be set only by the manufacturer.

4.1 Standard Parameter Table

Table4-1 Standard Parameter Table

Function Code	Name	Setting Range	Default	Change
Group P0: Standard Parameters				
P0-00	G/P type display	1: G (constant torque load) 2: P (fan and pump)	Model dependent	\bullet
P0-01	Motor 1 control mode	$\begin{aligned} & \text { 0: SVC } \\ & \text { 1: FVC } \\ & \text { 2: V/F } \end{aligned}$	0	\star
P0-02	Command source selection	0 : Operating panel 1: Terminal 2. Serial communication	0	N
P0-03	Main frequency source X selection	0 : Digital setting (power off, value deleted) : Digital setting (power off, value remained) 2: AI1 3: AI2 4: AI3 (optional) 5: Pulse setting (DI5) 6: Multi-reference 8: PID reference 7: Simple PLC 9: Communication setting 10: Keyboard with potentiometer (power off, value remained) 11: Keyboard with potentiometer (power off, value deleted) 12: Keyboard with potentiometer, change rate 1 Hz	10	\star
P0-04	Auxiliary frequency source Y selection	Same to P0-03	0	\star
P0-05	Base value of range of auxiliary frequency referencefor main and auxiliary superposition	0 : Relative to max. frequency 1: Relative to main frequency reference	0	N
P0-06	Range of auxiliary frequency reference for main and auxiliary superposition	0\% ~ 150\%	100\%	N

Function Code	Name	Setting Range	Default	Change
P0-07	Frequency source superposition selection	Units digit: Frequency reference selection 0 : Main frequency reference 1: Main and auxiliary calculation (basedon tens digit) 2: Switchover between main and auxiliary 3: Switchover between main and "main \& auxiliary calculation" 4: Switchover between auxiliary and "main \& auxiliary calculation" Tens digit: Main and auxiliary calculation formula 0: Main + auxiliary 1: Main - auxiliary 2: Max. (main, auxiliary) 3: Min. (main, auxiliary)	00	*
P0-08	Preset frequency	0.00 Hz to Max. frequency ($\mathrm{P} 0-10$)	50.00 Hz	\cdots
P0-09	Running direction	0 : Run in the default direction 1: Run in the direction reverse to the default direction	0	*
P0-10	Max. frequency	$50.00 \sim 500.00 \mathrm{~Hz}$	50.00 Hz	\star
P0-11	Setting channel of frequency upper limit	```0: Set by P0-12 1: AI1 2: AI2 3: AI3 4: Pulse reference 5: Communication reference```	0	\star
P0-12	Frequency reference upper limit	Frequency lower limit (P0-14) to max. frequency (P0-10)	50.00 Hz	3
P0-13	Frequency reference upper limit offset	0.00 Hz to max. frequency ($\mathrm{P} 0-10$)	0.00 Hz	3
P0-14	Frequency reference lower limit	0.00 Hz to frequency upper limit (P0-12)	0.00 Hz	3
P0-15	Carrier frequency	Model dependent	Model dependent	3
P0-16	Carrier frequency adjustment with temperature	0: No 1: Yes	1	3
P0-17	Acceleration time 1	$\begin{aligned} & 0.00-650.00 \mathrm{~s}(\mathrm{P} 0-19=2) \\ & 0.0-6500.0 \mathrm{~s}(\mathrm{P} 0-19=1) \\ & 0-65000 \mathrm{~s}(\mathrm{P} 0-19=0) \end{aligned}$	Model dependent	2
P0-18	Deceleration time 1	$\begin{aligned} & 0.00-650.00 \mathrm{~s}(\mathrm{P} 0-19=2) \\ & 0.0-6500.0 \mathrm{~s}(\mathrm{P} 0-19=1) \\ & 0-65000 \mathrm{~s}(\mathrm{P} 0-19=0) \\ & \hline \end{aligned}$	Model dependent	\%
P0-19	Acceleration/Deceleration time unit	$\begin{aligned} & 0: 1 \mathrm{~s} \\ & 1: 0.1 \mathrm{~s} \\ & 2: 0.01 \mathrm{~s} \end{aligned}$	1	*
P0-21	Frequency offset of auxiliary frequency source for X and Y operation	0.00 Hz to max. frequency ($\mathrm{P} 0-10$)	0.00 Hz	\star
P0-22	Frequency reference resolution	$1: 0.1 \mathrm{~Hz} \quad 2: 0.01 \mathrm{~Hz}$	2	*
P0-23	Retentive of digital setting frequency upon power failure	0: Not retentive 1: Retentive	0	\%

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P0-24	Motor parameter group selection	0 : Motor parameter group 1	0	\star
P0-25	Acceleration/Deceleration time base frequency	$\begin{aligned} & \text { 0: Max. frequency }(\mathrm{P} 0-10) \\ & \text { 1: Set frequency } \\ & 2: 100 \mathrm{~Hz} \end{aligned}$	0	\star
P0-26	Base frequency for UP/DOWN modification during running	0 : Running frequency 1: Set frequency	0	\star
P0-27	Binding command source to frequency source	Units digit: Binding operation panel command to frequency source 0 : No binding 1: Frequency source by digital setting 2: AI1 3: AI2 4: AI3 5: Pulse setting (DI5) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication setting Tens digit: Binding terminal command to frequency source Hundreds digit: Binding communication command to frequency source	0000	3
P0-28	Communication protocol	0: MODBUS protocol	0	\cdots
Group P1: Motor 1 Parameters				
P1-00	Motor type selection	1: Common asynchronous motor 2: Permanent magnetic synchronous motor	0	*
P1-01	Rated motor power	$0.1 \sim 1000.0 \mathrm{~kW}$	Model dependent	W
P1-02	Rated motor voltage	1~2000V	Model dependent	W
P1-03	Rated motor current	$0.01 \sim 655.35 \mathrm{~A}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.1 \sim 6553.5 \mathrm{~A}$ (AC drive power $>55 \mathrm{~kW}$)	Model dependent	\star
P1-04	Rated motor frequency	0.01 Hz to max. frequency	Model dependent	W
P1-05	Rated motor rotational speed	1~65535RPM	Model dependent	*
P1-06	Stator resistance (asynchronous motor)	$\begin{aligned} & 0.001 \sim 65.535 \Omega(\mathrm{AC} \text { drive power } \leq 55 \mathrm{~kW}) \\ & 0.0001 \sim 6.5535 \Omega(\mathrm{AC} \text { drive power }>55 \mathrm{~kW}) \end{aligned}$	tuning parameter	H

Function Code	Name	Setting Range	Default	Change
P1-07	Rotor resistance (asynchronous motor)	$0.001 \sim 65.535 \Omega$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.0001 \sim 6.5535 \Omega$ (AC drive power $>55 \mathrm{~kW}$)	tuning parameter	i
P1-08	Leakage inductive reactance (asynchronous motor)	$0.01 \sim 655.35 \mathrm{mH}(\mathrm{AC}$ drive power $\leq 55 \mathrm{~kW})$ $0.001 \sim 65.535 \mathrm{mH}$ (AC drive power $>55 \mathrm{~kW}$)	tuning parameter	*
P1-09	Mutual inductive reactance (asynchronous motor)	$0.1 \sim 6553.5 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.01 \sim 655.35 \mathrm{mH}$ (AC drive power $>55 \mathrm{~kW}$)	tuning parameter	\cdots
P1-10	No-load current (asynchronous motor)	$\begin{aligned} & 0.01 \mathrm{~A} \sim \text { P1-03 }(\text { AC drive power } \leq 55 \mathrm{~kW}) \\ & 0.1 \mathrm{~A} \sim \text { P1-03 }(\mathrm{AC} \text { drive power }>55 \mathrm{~kW}) \end{aligned}$	tuning parameter	3
P1-27	Encoder line number	1~65535	1024	3
P1-28	Encoder type	0: ABZ encoder 2: Rotational encoder	0	\cdots
P1-30	$A B$ sequence of $A B Z$ encoder	0: Forward 1: Reverse	0	*
P1-34	Rotational encoder pole number	1~65535	1	W
P1-36	Speed feedback PG offline detect time	0.0 s : No action $0.1 \sim 10.0 \mathrm{~s}$	0.0s	3
P1-37	Auto-tuning selection	0 : No auto-tuning 1: Asynchronous motor static auto-tuning 2: Asynchronous motor complete auto-tuning	0	H
Group P2: Motor 1 Vector Control Parameters				
P2-00	Speed loop proportional gain 1	$1 \sim 100$	30	\cdots
P2-01	Speed loop integral time 1	$0.01 \sim 10.00 \mathrm{~s}$	0.50s	3
P2-02	Switchover frequency 1	0.00~P2-05	5.00 Hz	N
P2-03	Speed loop proportional gain 2	$1 \sim 100$	20	$\hat{*}$
P2-04	Speed loop integral time 2	0.01~10.00S	1.00s	\star
P2-05	Switchover frequency 2	P2-02 to max. output frequency	10.00 Hz	$\hat{*}$
P2-06	Vector control slip gain	50\% ~ 200\%	100\%	*
P2-07	SVC speed feedback filter time	$0.000 \sim 0.100 \mathrm{~s}$	0.015 s	is

Function Code	Name	Setting Range	Default	Change
P2-09	Torque limit source in speed control		0	*
P2-10	Digital setting of torque upper limit in speed control	0.0\% ~ 200.0\%	150\%	3
P2-11	Torque limit source in speed control (generation)	0 : Set by P2-10 (same for generating and electric driving) 1: AI1 2: AI2 3: AI3 4: Pulse (DI5) 5: Set by communication 6: Min. (AI1, AI2) 7: Max. (AI1, AI2) Full scale of 1-7 corresponds to P2-12.	0	*
P2-12	Digital setting of torque upper limit in speed control (generation)	0.0\% ~ 200.0\%	150.0\%	H
P2-13	Excitation adjustment proportional gain	$0 \sim 60000$	2000	*
P2-14	Excitation adjustment integral gain	$0 \sim 60000$	1300	\cdots
P2-15	Torque adjustment proportional gain	$0 \sim 60000$	2000	3
P2-16	Torque adjustment integral gain	$0 \sim 60000$	1300	3
P2-17	Speed loop integral property	Units digit: integral separation 0: Disabled 1: Enabled	0	N
P2-21	Weak magnetic field max torque coefficients	$50 \sim 200 \%$	0	*
P2-22	Power generation limit enable	0 : Invalid 1: Effect all the time 2: Effect during constant speed 3: Effect during deceleration	0	3
P2-23	Upper limit of power generation	0.0\% ~ 200.0\%	0	N

Function Code	Name	Setting Range	Default	Change
Group P3: V/F Control Parameters				
P3-00	V/F curve setting	0: Linear V/F 1: Multi-point V/F 2~9: Reserved 10: V/F complete separation 11: V/F half separation	0	\star
P3-01	Torque boost	$\begin{aligned} & 0.0 \% \text { : (fixed torque boost) } \\ & 0.1 \% \sim 30.0 \% \end{aligned}$	Model dependent	\star
P3-02	Cut-off frequency of torque boost	$0.00 \mathrm{~Hz} \sim \max$ output frequency ($\mathrm{P} 0-10$)	50.00 Hz	\star
P3-03	Multi-point V/F frequency 1	$0.00 \mathrm{~Hz} \sim$ P3-05	0.00 Hz	\star
P3-04	Multi-point V/F voltage 1	0.0\% ~ 100.0\%	0.0\%	\star
P3-05	Multi-point V/F frequency 2 (F2)	P3-03 ~ P3-07	0.00 Hz	\star
P3-06	Multi-point V/F voltage 2 (V2)	0.0\% ~ 100.0\%	0.0\%	\star
P3-07	Multi-point V/F frequency 3 (F3)	P3-05 ~ rated motor frequency (P1-04)	0.00 Hz	\star
P3-08	Multi-point V/F voltage 3 (V3)	0.0\% ~ 100.0\%	0.0\%	\star
P3-10	V/F over-excitation gain	$0 \sim 200$	64	N
P3-11	V/F oscillation suppression gain	$0 \sim 100$	40	*
P3-13	Voltage source for V/F separation	0: Set by P3-14 1: AI1 2: AI2 3: AI3 4: Pulse setting (DI5) 5: Multi-reference 6: Simple PLC 7: PID reference 8: Set by communication Note: 100.0% corresponds to the rated motor voltage	0	*
P3-14	Digital setting of voltage for V/F separation	$0 \mathrm{~V} \sim$ rated motor voltage	0V	*
P3-15	Voltage rise time of V/F separation	$0.0 \mathrm{~s} \sim 1000.0 \mathrm{~s}$ Note: It is the time used for the voltage increases from $0 \mathrm{~V} \sim$ motor rated voltage.	0.0s	\star

Function Code	Name	Setting Range	Default	Change
P3-16	Voltage decrease time of V/F separation	$0.0 \mathrm{~s} \sim 1000.0 \mathrm{~s}$ Note: It is the time used for the voltage increases from $0 \mathrm{~V} \sim$ motor rated voltage.	0.0s	E
P3-17	V/F separation stop mode selection	0 : Frequency/ voltage separately decrease to 0 1 : Voltage decrease to 0 , then frequency decrease	0	3
P3-18	Over-current stall action current	$50 \sim 200 \%$	150\%	\star
P3-19	Enable over-current stall	0 : Invalid 1: Valid	1	\star
P3-20	Over-current stall suppression gain	$0 \sim 100$	20	is
P3-21	Current compensation coefficient for double-speed over-current stall action	$50 \sim 200 \%$	50\%	\star
P3-22	Over-voltage stall action voltage	$200.0 \sim 2000.0$	$\begin{aligned} & 380 \mathrm{~V}: 760 \mathrm{~V} \\ & 220 \mathrm{~V}: 380 \mathrm{~V} \end{aligned}$	W
P3-23	Enable over-voltage stall	0 : Invalid 1: Valid	1	\star
P3-24	Over-voltage stall suppression frequency gain	$0 \sim 100$	30	3
P3-25	Over-voltage stall suppression voltage gain	$0 \sim 100$	30	*
P3-26	Max rise frequency limit of over-voltage stall	$0 \sim 50 \mathrm{~Hz}$	5 Hz	N

Function Code	Name	Setting Range	Default	Change
Group P4: Input Terminals				
P4-00	DI1 function selection	0: No function 1: Forward RUN (FWD) 2: Reverse RUN (REV) (Note: P4-11 shall be set when P4-00 is set to 1 or 2.) 3: Three-wire control 4: Forward JOG (FJOG) 5: Reverse JOG (RJOG) 6: Terminal UP 7: Terminal DOWN 8: Coast to stop 9: Fault reset (RESET) 10: RUN pause 11: External fault normally open (NO) input 12: Multi-reference terminal 1 14: Multi-reference terminal 3 13: Multi-reference terminal 2 15: Multi-reference terminal 4	1	N
P4-01	DI2 function selection	16: Terminal 1 for acceleration/deceleration time selection 17: Terminal 2 for acceleration/deceleration time selection 18: Frequency command switchover 19: UP and DOWN setting clear (terminal, keypad) 20: Running command switchover terminal 1 21: Acceleration/Deceleration prohibited 22: PID pause 23: PLC status reset	4	N
P4-02	DI3 function selection	25: Counter input 24: Swing pause 27: Length count input 26: Counter reset 29: Torque control prohibited 28: Length reset 30: Pulse input (enabled only for DI5) 31: Reserved 32: Immediate DC injection braking 33: External fault normally closed (NC) input 34: Frequency modification enabled 35: PID action direction reverse	9	N
P4-03	DI4 function selection	37: Running command switchover terminal 2 36: External STOP terminal 1 38: PID integral disabled 39: Switchover between main frequency source and preset frequency 40: Switchover between auxiliary frequency source and preset frequency 41: Motor terminal selection 42: Reserved 43: PID parameter switchover 44: User-defined fault 1	12	3
P4-04	DI5 function selection	45: User-defined fault 2 46: Speed control/Torque control switchover 47: Emergency stop 48: External STOP terminal 2 49: Deceleration DC injection braking 50: Clear the current running time 51: Two-wire/Three-wire mode switchover 52: Reverse frequency forbidden 53-59: Reserved	13	N

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P4-10	DI filter time	$0.000 \sim 1.000 \mathrm{~s}$	0.010s	$\hat{3}$
P4-11	Terminal command mode	0 : Two-line mode 1 1: Two-line mode 2 2: Three-line mode 1 3: Three-line mode 2	0	\star
P4-12	Terminal UP/DOWN rate	$0.001 \sim 65.535 \mathrm{~Hz} / \mathrm{s}$	$1.00 \mathrm{~Hz} / \mathrm{s}$	$\underset{3}{3}$
P4-13	Al curve 1 mini. input	$0.00 \mathrm{~V} \sim \mathrm{P} 4-15$	0.00 V	*
P4-14	Corresponding setting of Al curve 1 mini. input	-100.0\% ~ + 100.0\%	0	N
P4-15	Al curve 1 max input	P4-13 ~+10.00V	10.00 V	\cdots
P4-16	Corresponding setting of Al curve 1 max input	-100.0\% ~ + 100.0\%	100.0\%	*
P4-17	AI1 filter time	$0.00 \sim 10.00 \mathrm{~S}$	0.10 s	*
P4-18	Al curve 2 mini. input	$0.00 \mathrm{~V} \sim \mathrm{P} 4-15$	0.00 V	*
P4-19	Corresponding setting of Al curve 2 mini. input	-100.0\% ~ + 100.0\%	0.0\%	N
P4-20	Al curve 2 max input	P4-18 ~ +10.00 V	10.00 V	\cdots
P4-21	Corresponding setting of Al curve 2 max input	-100\% ~ 100\%	100.0\%	N
P4-22	AI2 filter time	0.00s $\sim 10.00 \mathrm{~s}$	0.10s	\cdots
P4-23	Al curve 3 mini. input	-10.00V ~ P4-25	-10.00V	*
P4-24	Corresponding setting of Al curve 3 mini. input	-100.0\% ~ + 100.0\%	-100.0\%	N
P4-25	Al curve 3 max input	P4-23 ~+10.00 V	10.00 V	N
P4-26	Corresponding setting of Al curve 3 max input	-100.0\% ~ + 100.0\%	100.0\%	N
P4-27	AI3 filter time	$0.00 \sim 10.00 \mathrm{~S}$	0.10s	$\stackrel{3}{3}$
P4-28	Pulse mini. input	$0.00 \mathrm{kHz} \sim \mathrm{P} 4-30$	0.00 kHz	今
P4-29	Corresponding setting of pulse mini. input	-100\% ~ 100\%	0.0\%	N
P4-30	Pulse max input	$\mathrm{P} 4-28 \sim 100 \mathrm{kHz}$	50.00 kHz	今
P4-31	Corresponding setting of pulse max input	-100\% ~ 100\%	100.0\%	N
P4-32	Pulse filter time	$0.00 \sim 10.00 \mathrm{~S}$	0.10s	N
P4-33	Al curve selection	Units digit: AI1 curve selection 1: Curve 1 (2 points, see P4-13~P4-16) 2: Curve 2(2 points, see P4-18~P4-21) 3: Curve 3(2 points, see P4-23~P4-26) 4: Curve 4(4 points, see D6-00~D6-07) 5: Curve 5(4 points, see D6-08~D6-15) Tens digit: AI2 curve selection Hundreds digit: AI3 curve selection	321	N

Chapter 4 Function Parameter Table

$\begin{array}{c}\text { Function } \\ \text { Code }\end{array}$	Name	$\begin{array}{l}\text { Setting Range }\end{array}$	Default	Change
P4-34	$\begin{array}{l}\text { Setting for Al less than } \\ \text { min. input }\end{array}$	$\begin{array}{l}\text { Units digit: AI1 lower than min. input setting } \\ 0: \text { Corresponding percentage of min. input } \\ 1: 0.0 \% \\ \text { Tens digit: AI2 lower than min. input setting } \\ \text { Hundreds digit: AI3 lower than min. input } \\ \text { setting }\end{array}$	000	

P5-03	Relay 2 function selection (P/A-P/B-P/C)	15: Ready for RUN 16: AI1>AI2 17: Frequency upper limit reached 18: Frequency lower limit reached (no output at stop) 19: Under-voltage status output 20: Communication setting 21: Reserved 22: Reserved 23: Zero-speed running 2 (having output at stop) 24: Accumulative power-on time reached 25: Frequency level detection FDT2 output 26: Frequency 1 reached 27: Frequency 2 reached 28: Current 1 reached	0	3
P5-04	DO1 output function selection	30: Timing reached 31: AI1 input limit exceeded 32: Load becoming 0 33: Reverse running 34: Zero current state 35: Module temperature reached 36: Software current limit exceeded 37: Frequency lower limit reached (having output at stop) 38: Alarm output 39: Motor overheat warning 40: Current running time reached 41: Fault output (There is no output if it is the coast to stop fault and under-voltage occurs.) 42: Reserved 43: Auxiliary pump	1	3
P5-06	FMP output function selection	0 : Running frequency 1: Set frequency 2: Output current 3: Output torque (absolute value) 4: Output power 5: Output voltage	0	3
P5-07	AO1 function selection	6: Pulse input($100.0 \%=100.0 \mathrm{kHz}$) 7: AI1 10: Length 11: Count value 12: Communication setting	0	3
P5-08	AO2 function selection	13: Motor rotational speed 14: Output current $(100.0 \%=1000.0 \mathrm{~A})$ 15: Output voltage $(100.0 \%=1000.0 \mathrm{~V})$ 16: Output torque (actual value)	1	*
P5-09	FMP max output frequency	$0.01 \mathrm{kHz} \sim 100.00 \mathrm{kHz}$	$\begin{gathered} 50.00 \\ \mathrm{kHz} \end{gathered}$	*

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P5-10	AO1 offset coefficient	-100.0\% ~ + 100.0\%	0.0\%	*
P5-11	AO1 gain	$-10.00 \sim+10.00$	1.00	N
P5-12	AO2 offset coefficient	-100.0\% ~ + 100.0\%	0.0\%	认
P5-13	AO2 gain	$-10.00 \sim+10.00$	1.00	N
P5-17	FMR output delay time	$0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}$	0.0s	N
P5-18	Relay 1 output delay time	$0.0 \mathrm{~s} \sim 3600.0 \mathrm{~s}$	0.0s	N
P5-19	Relay 2 output delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	*
P5-20	Relay 3 output delay time	0.0s $\sim 3600.0 \mathrm{~s}$	0.0s	*
P5-22	Active mode selection of DO output terminals	0: Positive logic active 1: Negative logic active Units digit: FMR active mode Tens digit: Relay1 active mode Hundreds digit: Relay2 Thousands digit: DO1	00000	*
Group P6: Start/Stop Control				
P6-00	Start mode	0: Direct start 1: Rotational speed tracking restart 2: Pre-excited start (asynchronous motor)	0	N
P6-01	Rotational speed tracking mode	0 : From frequency at stop 1: From zero speed 2: From max frequency	0	\star
P6-02	Rotational speed tracking speed	1~100	20	*
P6-03	Startup frequency	$0.00 \sim 10.00 \mathrm{~Hz}$	0.00 Hz	*
P6-04	Startup frequency holding time	$0.0 \sim 100.0 \mathrm{~s}$	0.0s	\star
P6-05	Startup DC braking current/ pre-excited current	0\% ~ 100%	0\%	\star
P6-06	Startup DC braking time/ pre-excited time	$0.0 \sim 100.0 \mathrm{~s}$	0.0s	\star
P6-07	Acceleration/Deceleration mode	0: Linear acceleration/ deceleration 1, 2: S-curve acceleration/ deceleration A	0	\star
P6-08	Time proportion of S-curve start segment	0.0\% ~ (100.0\% to P6-09)	30.00\%	\star
P6-09	Time proportion of S-curve end segment	0.0\% ~ (100.0\% to P6-08)	30.00\%	\star
P6-10	Stop mode	0: Decelerate to stop 1: Coast to stop	0	*
P6-11	Initial frequency of stop DC braking	0.00 Hz to max frequency	0.00 Hz	N
P6-12	Waiting time of stop DC braking	$0.0 \sim 100.0 \mathrm{~s}$	0.0s	N
P6-13	Stop DC braking current	0\% ~ 100\%	0\%	\star
P6-14	Stop DC braking time	$0.0 \sim 100.0 \mathrm{~s}$	0.0s	*

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P6-15	Brake use ratio	0\% ~ 100%	100\%	3
Group P7: Operation Panel and Display				
P7-00	Digital tube lack of picture inspection enable	0	0	T
P7-01	QUICK/JQG Key function selection	0: QUICK/JQG key disabled 1: Switchover between operation panel control and remote command control (terminal or communication) 2: Switchover between forward rotation and reverse rotation 3: Forward JOG 4: Reverse JOG	0	\star
P7-02	STOP/RESET key function	0: STOP/RESET key enabled only in operation panel control 1: STOP/RESET key enabled in any operation mode	1F	is
P7-03	LED display running parameters 1	0000 ~ FFFF Bit00: Running frequency $1(\mathrm{~Hz})$ Bit01: Frequency reference (Hz) Bit02: Bus voltage (V) Bit03: Output voltage (V) Bit04: Output current (A) Bit05: Output power (kW) Bit06: Output torque (\%) Bit07: DI input state Bit08: DO output state Bit09: AI1 voltage (V) Bit10: AI2 voltage (V) Bit12: Count value Bit13: Length value Bit14: Load speed display Bit15: PID reference	1F	N
P7-04	LED display running parameters 2	0000 ~ FFFF Bit00: PID feedback Bit01: PLC stage Bit02: Pulse setting frequency (kHz) Bit03: Running frequency $2(\mathrm{~Hz})$ Bit04: Remaining running time Bit05: AI1 voltage before correction (V) Bit06: AI2 voltage before correction (V) Bit08: Linear speed Bit09: Current power-on time (Hour) Bit10: Current running time (Min) Bit11: Pulse setting frequency (Hz) Bit12: Communication setting value Bit13: Encoder feedback speed (Hz) Bit14: Main frequency X display (Hz) Bit15: Auxiliary frequency Y display (Hz)	33	H

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P7-05	LED display stop parameters	0000 ~ FFFF Bit00: Frequency reference (Hz) Bit01: Bus voltage (V) Bit02: DI state Bit03: DO state Bit04: AI1 voltage (V) Bit05: AI2 voltage (V) Bit07: Count value Bit08: Length value Bit09: PLC stage Bit10: Load speed Bit11: PID reference Bit12: Pulse reference (kHz)	33	N
P7-06	Load speed display coefficient	$0.0001 \sim 6.5000$	1.0000	W
P7-07	Heat sink temperature of inverter module	$0.0 \sim 100.0^{\circ} \mathrm{C}$	-	\bullet
P7-08	Product number	-	-	\bullet
P7-09	Accumulative running time	0h~65535h	-	\bullet
P7-10	Performance software version	-	-	\bullet
P7-11	Function software version	-	-	-
P7-12	Number of decimal places for load speed display	Units digit: Number of decimal places for U0-14 0 : No decimal place 1: One decimal places 2: Two decimal places Tens digit: Number of decimal places of U0-19/U0-29 1: One decimal places 2: Two decimal places	20	*
P7-13	Accumulative power-on time	$0 \sim 65535 \mathrm{~h}$	-	\bullet
P7-14	Accumulative power consumption	$0 \sim 65535 \mathrm{kWh}$	-	\bullet
Group P8: Auxiliary Function				
P8-00	JOG running frequency	$0.00 \mathrm{~Hz} \sim \max$ frequency	2.00 Hz	\star
P8-01	JOG acceleration time	$0.0 \sim 6500.0 \mathrm{~s}$	20.0s	N
P8-02	JOG deceleration time	$0.0 \sim 6500.0 \mathrm{~s}$	20.0s	*
P8-03	Acceleration time 2	$\begin{aligned} & 0.00 \sim 650.00 \mathrm{~s}(\mathrm{P} 0-19=2) \\ & 0.0 \sim 6500.0 \mathrm{~s}(\mathrm{P} 0-19=1) \\ & 0 \sim 65000 \mathrm{~s}(\mathrm{P} 0-19=0) \end{aligned}$	Model dependent	*
P8-04	Deceleration time 2			
P8-05	Acceleration time 3			
P8-06	Deceleration time 3			
P8-07	Acceleration time 4			
P8-08	Deceleration time 4			

Function Code	Name	Setting Range	Default	Change
P8-09	Jump frequency 1			
P8-10	Jump frequency 2	$0.00 \mathrm{~Hz} \sim \mathrm{max}$	0.00Hz	
P8-11	Frequency jump amplitude	$0.00 \mathrm{~Hz} \sim$ max frequency	0.00 Hz	3
P8-12	Forward/Reverse rotation dead-zone time	$0.0 \sim 3000.0 \mathrm{~s}$	0.0s	N
P8-13	Reverse control	0: Enabled 1: Disabled	0	3
P8-14	Running mode when set frequency lower than frequency lower limit	0 : Run at frequency lower limit 1: Stop 2: Run at zero speed	0	3
P8-15	Drop control	0.00\% ~ 100.00\%	0.00\%	N
P8-16	Accumulative power-on time threshold	$0 \sim 65000 \mathrm{~h}$	0h	N
P8-17	Accumulative running time threshold	$0 \sim 65000 \mathrm{~h}$	0h	3
P8-18	Startup protection selection	0: Disabled 1: Enabled	0	3
P8-19	Frequency detection value (FDT1)	0.00 Hz to max frequency	50.00 Hz	\%
P8-20	Frequency detection hysteresis (FDT 1)	0.0\% ~ 100.0\% (FdT1 level)	5\%	W
P8-21	Detection range of frequency reached	0.00 ~ 100\% (max frequency)	0.00\%	W
P8-22	Jump frequency during acceleration/deceleration	0: Disabled 1: Enabled	0	H
P8-25	Frequency switchover point between acceleration time 1 and acceleration time 2	$0.00 \mathrm{~Hz} \sim \max$ frequency	0.00Hz	2
P8-26	Frequency switchover point between deceleration time 1 and deceleration time 2	$0.00 \sim$ max frequency	0.00 Hz	2
P8-27	Terminal JOG preferred	0: Disabled 1: Enabled	0	A
P8-28	Frequency detection value (FDT2)	$0.00 \sim \max$ frequency	50.00 Hz	*
P8-29	Frequency detection hysteresis (FDT hysteresis 2)	0.0\% ~ 100.0\% (FdT2 level)	5.0\%	N
P8-30	Any frequency reaching detection value 1	$0.00 \mathrm{~Hz} \sim \max$ frequency	50.00 Hz	*
P8-31	Any frequency reaching detection amplitude 1	0.0\% $\sim 100.0 \%$ (max frequency)	0.0\%	N
P8-32	Any frequency reaching detection value 2	$0.00 \mathrm{~Hz} \sim \max$ frequency	50.00 Hz	3

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P8-33	Any frequency reaching detection amplitude 2	0.0\% $\sim 100.0 \%$ (max frequency)	0.0\%	2
P8-34	Zero current detection level	0.0\% $\sim 300.0 \%$ (rated motor current)	5.0\%	ω
P8-35	Zero current detection delay time	$0.01 \sim 600.00 \mathrm{~s}$	0.10s	A
P8-36	Output over-current threshold	0.0% (no detection) $0.1 \% \sim 300.0 \%$ (rated motor current)	200.0\%	N
P8-37	Output over-current detection delay time	$0.00 \sim 600.00 \mathrm{~s}$	0.00s	2
P8-38	Any current reaching 1	0.0\% $\sim 300.0 \%$ (rated motor current)	100.0\%	*
F8-39	Any current reaching 1 amplitude	0.0\% ~ 300.0\% (rated motor current)	0.0\%	3
P8-40	Any current reaching 2	0.0\% $\sim 300.0 \%$ (rated motor current)	100.0\%	N
P8-41	Any current reaching 2 amplitude	0.0\% ~ 300.0\% (rated motor current)	0.0\%	*
P8-42	Timing function	0: Disabled 1: Enabled	0	\star
P8-43	Timing duration source	```0: Set by P8-44 1: AI1 2: AI2 3: AI3 \(100 \%\) of analog input corresponds to the value of P8-44```	0	\star
P8-44	Timing duration	$0.0 \sim 6500.0 \mathrm{~min}$	0.0Min	\star
P8-45	AI1 input voltage lower limit	$0.00 \mathrm{~V} \sim \mathrm{P} 8-46$	3.10 V	*
P8-46	AI1 input voltage upper limit	P8-45 ~ 10.00 V	6.80 V	*
P8-47	IGBT temperature threshold	$0^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	H
P8-48	Cooling fan working mode	0 : Working during drive running 1: Working continuously	0	H
P8-49	Wake-up frequency	Hibernating frequency (P8-51) to max frequency (P0-10)	0.00 Hz	H
P8-50	Wake-up delay time	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}$	0.0s	*
P8-51	Hibernating frequency	$0.00 \mathrm{~Hz} \sim$ wake up frequency (P8-49)	0.00 Hz	\pm
P8-52	Hibernating delay time	$0.0 \mathrm{~s} \sim 6500.0 \mathrm{~s}$	0.0s	N
P8-53	Running time threshold this time	$0.0 \sim 6500.0 \mathrm{~min}$	0.0Min	*
P8-54	Output power correction cofficient	0.00\% ~ 200.0\%	100.0\%	*
P8-55	Wake-up level	1\% ~ 150%	80.0\%	ω
P8-56	High speed frequency	$0.00 \mathrm{~Hz} \sim \mathrm{P} 0-10$	25.00	*
P8-57	High speed frequency delay time	0.0s $\sim 600.0 \mathrm{~s}$	60s	*

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P8-58	Low speed frequency	$0.00 \mathrm{~Hz} \sim \mathrm{P} 0-10$	0.00	N
P8-59	Low speed frequency delay time	0.0s ~600.0s	60s	\star
Group P9: Keypad and Display				
P9-00	Motor overload protection	0: Disabled 1: Enabled	1	*
P9-01	Motor overload protection gain	0.20~10.00	1.00	*
P9-02	Motor overload pre-warning coefficient	50\% ~ 100\%	80\%	*
P9-03	Over-voltage protection gain	$0 \sim 100$	30	\uparrow
P9-04	Over-voltage protection voltage	$200 \mathrm{~V} \sim 2000 \mathrm{~V}$	$\begin{aligned} & 380 \mathrm{~V}: 760 \mathrm{~V} \\ & 220 \mathrm{~V}: 380 \mathrm{~V} \end{aligned}$	*
P9-07	Detection of short-circuit to ground upon power-on	0: Disabled 1: Enabled	1	\star
P9-08	Brake unit action voltage	200V ~ 2000V	$\begin{aligned} & 380 \mathrm{~V}: 690 \mathrm{~V} \\ & 220 \mathrm{~V}: 360 \mathrm{~V} \end{aligned}$	\star
P9-09	Auto reset times	$0 \sim 20$	0	*
P9-10	Selection of DO action during auto reset	0: Not action 1: Action	0	*
P9-11	Delay of auto reset	0.1s $\sim 100.0 \mathrm{~s}$	1.0s	$\hat{*}$
P9-12	Input phase loss/pre-charge relay protection	Units digit: Input phase loss protection Tens digit: Pre-charge relay protection 0: Disabled 1: Enabled	11	H
P9-13	Output phase loss protection	0: Disabled 1: Enabled	1	H
P9-14	1st fault type	0 : No fault $\quad 1$: Reserved 2: over-current during acceleration 3: over-current during deceleration 4: over-current at constant speed 5: Overvoltage during acceleration 6: Overvoltage during deceleration 7: Overvoltage at constant speed 8: Buffer resistor overload 9: Undervoltage 10: AC drive overload 11: Motor overload	-	\bullet

P9-15	2nd fault type	12: Power input phase loss 13: Power output phase loss 14: IGBT overheat 15: External fault 16: Communication fault 17: Contactor fault 18: Current detection fault 19: Motor auto-tuning fault 20: Encoder/PG card fault 21: Parameter read and write fault 22: AC drive hardware fault 23: Motor short circuited to ground	-	-
P9-16	3rd (latest) fault type	26: Accumulative running time reached 27: User-defined fault 1 28: User-defined fault 2 29: Accumulative power-on time reached 30: Load lost 31: PID feedback lost during running 40: Fast current limit timeout 41: Motor switchover error during running 42: Too large speed deviation 43: Motor over-speed 45: Motor overheat 51: Initial position error 55: Slave error in master-slave control	-	\bullet
P9-17	Frequency upon 3rd fault	$0.00 \mathrm{~Hz} \sim 655.35 \mathrm{~Hz}$	0.00 Hz	-
P9-18	Current upon 3rd fault	$0.00 \mathrm{~A} \sim 655.35 \mathrm{~A}$	0.00 A	\bullet
P9-19	Bus voltage upon 3rd fault	$0.00 \mathrm{~V} \sim 6553.5 \mathrm{~V}$	0.0 V	\bullet
P9-20	DI state upon 3rd fault	0~9999	0	-
P9-21	DO state upon 3rd fault	$0 \sim 9999$	0	\bullet
P9-22	AC drive state upon 3rd fault	$0 \sim 65535$	0	\bullet
P9-23	Power-on time upon 3rd fault	0s ~65535s	0s	-
P9-24	Running time upon 3rd fault	0s ~6553.5s	0.0s	-
P9-27	Frequency upon 2nd fault	$0.00 \mathrm{~Hz} \sim 655.35 \mathrm{~Hz}$	0.00 Hz	-
P9-28	Current upon 2nd fault	$0.00 \mathrm{~A} \sim 655.35 \mathrm{~A}$	0.00A	\bullet
P9-29	Bus voltage upon 2nd fault	$0.00 \mathrm{~V} \sim 6553.5 \mathrm{~V}$	0.0 V	\bullet
P9-30	DI status upon 2nd fault	$0 \sim 9999$	0	\bullet
P9-31	DO status upon 2nd fault	$0 \sim 9999$	0	\bullet
P9-32	AC drive status upon 2nd fault	$0 \sim 65535$	0	\bullet
P9-33	Power-on time upon 2nd fault	0s $\sim 65535 \mathrm{~s}$	0s	\bullet

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P9-34	Running time upon 2nd fault	0s $\sim 6553.5 \mathrm{~s}$	0.0 s	-
P9-37	Frequency upon 1st fault	$0.00 \mathrm{~Hz} \sim 655.35 \mathrm{~Hz}$	0.00 Hz	-
P9-38	Current upon 1st fault	$0.00 \mathrm{~A} \sim 655.35 \mathrm{~A}$	0.00A	\bullet
P9-39	Bus voltage upon 1st fault	$0.00 \mathrm{~V} \sim 6553.5 \mathrm{~V}$	0.0 V	-
P9-40	DI status upon 1st fault	0 ~ 9999	0	\bullet
P9-41	DO status upon 1st fault	$0 \sim 9999$	0	\bullet
P9-42	AC drive status upon 1st fault	0~65535	0	\bullet
P9-43	Power-on time upon 1st fault	0s $\sim 65535 \mathrm{~s}$	0s	\bullet
P9-44	Running time upon 1st fault	0s $\sim 6553.5 \mathrm{~s}$	0.0s	\bullet
P9-47	Fault protection action selection 1	Units digit: Motor overload (Err11) 0: Coast to stop 1: Stop according to the stop mode 2: Continue to run Tens digit: Power input phase loss (Err12) Hundreds digit: Power output phase loss (Err13) Thousands digit: External equipment fault (Err15) Ten thousands digit: Communication fault (Err16)	00000	H
P9-48	Fault protection action selection 2	Units digit: Encoder fault (Err20) 0: Coast to stop Tens digit: EEPROM read-write fault (Err21) 0: Coast to stop 1: Stop according to the stop mode Hundreds digit: Overload fault action(Err10) Thousands digit: Motor overheat (Err45) Ten thousands digit: Accumulative running time reached (Err26)	00000	N
P9-49	Fault protection action selection 3	Units digit: User-defined fault 1 (Err27) 0: Coast to stop 1: Stop according to the stop mode 2: Continue to run Tens digit: User-defined fault 2 (Err28) 0: Coast to stop 1: Stop according to the stop mode 2: Continue to run Hundreds digit: Accumulative power-on time reached (Err29) 0: Coast to stop 1: Stop according to the stop mode 2: Continue to run	00000	*

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
P9-50	Fault protection action selection 4	Units digit: Too large speed deviation (Err42) 0: Coast to stop 1: Stop according to the stop mode 2: Continue to run Tens digit: Motor over-speed(Err43) Hundreds digit: Initial position fault (Err51)	00000	H
P9-54	Frequency selection for continuing to run upon fault	0: Current running frequency 1: Run at set frequency 2: Run at upper limit frequency 3: Run at lower limit frequency 4: Backup frequency upon abnormality	0	*
P9-55	Backup frequency upon fault	$\begin{aligned} & 0.0 \% \sim 100.0 \% \\ & (100.0 \% \text { corresponds to max frequency } \\ & (\mathrm{P} 0-10)) \end{aligned}$	100.0\%	\star
P9-56	Type of motor temperature sensor	0: No temperature sensor 1: PT100 2: PT1000	0	3
P9-57	Motor overheat protection threshold	$0^{\circ} \mathrm{C} \sim 200^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	3
P9-58	Motor overheat pre-warning threshold	$0^{\circ} \mathrm{C} \sim 200^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	N
P9-59	Power dip ride-through function selection	0: Disabled 1: Bus voltage constant control 2: Decelerate to stop	0	\star
P9-60	Threshold of power dip ride-through function disabled	80\% ~ 100\%	85\%	\star
P9-61	Judging time of bus voltage recovering from power dip	0.0s $\sim 100.0 \mathrm{~s}$	0.5 s	\star
P9-62	Threshold of power dip ride-through function enabled	60\% ~ 100\%	80\%	\star
P9-63	Load lost protection	0: Disabled 1: Enabled	0	*
P9-64	Load lost detection level	0.0\% ~ 100.0\%	10.0\%	*
P9-65	Load lost detection time	$0.0 \sim 60.0 \mathrm{~s}$	1.0s	*
P9-67	Overspeed detection level	0.0\% $\sim 50.0 \%$ (max frequency)	20.0\%	N
P9-68	Overspeed detection time	0.0s: Not detected $\quad 0.1 \sim 60.0 \mathrm{~s}$	5.0s	N
P9-69	Detection level of speed error	0.0\% ~ 50.0\% (max frequency)	20.0\%	\%
P9-70	Detection time of speed error	0.0 s : Not detected $\quad 0.1 \sim 60.0 \mathrm{~s}$	5.0s	$\stackrel{3}{3}$
P9-71	Gain for power dip ride-through Kp	$0 \sim 100$	40	N
P9-72	Coefficient for power dip ride-through Ki	$0 \sim 100$	30	N
P9-73	Deceleration for power dip ride-through	0~300.0s	20.0s	\star
Group PA: PID Function				
PA-00	PID reference setting channel	0: Set by PA-01 1: AI1 2: AI2 3: AI3 4: Pulse setting (DI5) 5: Communication setting 6: Multi-reference	0	is
PA-01	PID digital setting	0.0\% ~ 100.0\%	50.0\%	3

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change							
PA-02	PID feedback setting channel	0: AI1 1: AI2 2: AI3 \quad 3: AI1-AI2 4: Pulse setting (DI5) 5: Communication setting 6: AI1 + AI2 7: Max. (\|AI1	,	AI2) 8: Min. (AI1	,	AI2)	0	\cdots
PA-03	PID operation direction	0: Forward 1: Reverse	0	N							
PA-04	PID reference and feedback range	$0 \sim 65535$	1000	3							
PA-05	Proportional gain Kp1	$0.0 \sim 1000.0$	20.0	\star							
PA-06	Integral time Til	$0.01 \mathrm{~s} \sim 10.00 \mathrm{~s}$	2.00 s	N							
PA-07	Differential time Td1	$0.000 \mathrm{~s} \sim 10.000 \mathrm{~s}$	0.000 s	\star							
PA-08	PID output limit in reverse direction	$0.00 \mathrm{~Hz} \sim \max$ frequency	0.00 Hz	*							
PA-09	PID error limit	0.0\% ~ 100.0\%	0.0\%	*							
PA-10	PID differential limit	0.00\% ~ 100.00\%	0.10\%	*							
PA-11	PID reference change time	$0.00 \sim 650.00 \mathrm{~s}$	0.00s	N							
PA-12	PID feedback filter time	$0.00 \sim 60.00 \mathrm{~s}$	0.00 s	i							
PA-13	PID output filter time	$0.00 \sim 60.00 \mathrm{~s}$	0.00 s	*							
PA-14	Reserved	-	-	\%							
PA-15	Proportional gain Kp2	$0.0 \sim 1000.0$	20.0	*							
PA-16	Integral time Ti2	$0.01 \mathrm{~s} \sim 10.00 \mathrm{~s}$	2.00 s	*							
PA-17	Differential time Td2	$0.000 \mathrm{~s} \sim 10.000 \mathrm{~s}$	0.000 s	*							
PA-18	PID parameter switchover condition	0 : No switchover 1: Switchover via DI 2: Auto switchover based on PID error 3: Auto switchover based on running frequency	0	N							
PA-19	PID error 1 for auto switchover	0.0\% ~ PA-20	20.0\%	N							
PA-20	PID error 2 for auto switchover	PA-19 ~ 100.0\%	80.0\%	*							
PA-21	PID initial value	0.0\% ~ 100.0\%	0.0\%	3							
PA-22	PID initial value active time	$0.00 \sim 650.00 \mathrm{~s}$	0.00s	N							
PA-23	Reversed	-	-	3							
PA-24	Reversed										
PA-25	PID integral property	Units digit: Integral separation 0: Disabled 1: Enabled Tens digit: Whether to stop integral operation when the PID output reaches the limit 0 : Continue integral operation 1: Stop integral operation	00	N							
PA-26	Detection value of PID feedback loss	$\begin{aligned} & 0.0 \% \text { : No detection } \\ & 0.1 \% \sim 100.0 \% \end{aligned}$	0.0\%	3							

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
PA-27	Detection time of PID feedback loss	0.0s ~ 20.0s	0.0s	N
PA-28	PID operation at stop	0: Disabled 1: Enabled	0	N
Group Pb: Wobble Function, Fixed Length and Count				
$\mathrm{Pb}-05$	Set length	$0 \sim 65535 \mathrm{~m}$	1000m	N
Pb-06	Actual length	$0 \sim 65535 \mathrm{~m}$	0 m	*
$\mathrm{Pb}-07$	Number of pulses per meter	$0.1 \sim 6553.5$	100.0	N
$\mathrm{Pb}-08$	Set count value	$1 \sim 65535$	1000	T
$\mathrm{Pb}-09$	Designated count value	1~65535	1000	N
Group PC: Multi-Reference and Simple PLC Function				
PC-00	Reference 0	-100.0\% ~ 100.0\%	0.0\%	N
PC-01	Reference 1	-100.0\% ~ 100.0\%	0.0\%	3
PC-02	Reference 2	-100.0\% ~ 100.0\%	0.0\%	N
PC-03	Reference 3	-100.0\% ~ 100.0\%	0.0\%	3
PC-04	Reference 4	-100.0\% ~ 100.2\%	0.0\%	*
PC-05	Reference 5	-100.0\% ~ 100.2\%	0.0\%	*
PC-06	Reference 6	-100.0\% ~ 100.0\%	0.0\%	认
PC-07	Reference 7	-100.0\% ~ 100.0\%	0.0\%	N
PC-08	Reference 8	-100.0\% ~ 100.0\%	0.0\%	is
PC-09	Reference 9	-100.0\% ~ 100.0\%	0.0\%	*
PC-10	Reference 10	-100.0\% ~ 100.0\%	0.0\%	*
PC-11	Reference 11	-100.0\% ~ 100.0\%	0.0\%	*
PC-12	Reference 12	-100.0\% ~ 100.0\%	0.0\%	N
PC-13	Reference 13	-100.0\% ~ 100.0\%	0.0\%	N
PC-14	Reference 14	-100.0\% ~ 100.0\%	0.0\%	N
PC-15	Reference 15	-100.0\% ~ 100.0\%	0.0\%	N
PC-16	Simple PLC running mode	0 : Stop after running one cycle 1: Keep final values after running one cycle 2: Repeat after running one cycle	0	N
PC-17	Simple PLC retentive selection	Unit digit: Retentive at power down 0 : Not retentive 1: Retentive Tens digit: Retentive at stop 0 : Not retentive at stop 1: Retentive at stop	00	*
PC-18	Running time of simple PLC reference 0	0.0 s (h) ~ 6553.5s (h)	0.0s (h)	*
PC-19	Acceleration/deceleration time of simple PLC reference 0	$0 \sim 3$	0	H

Function Code	Name	Setting Range	Default	Change
PC-20	Running time of simple PLC reference 1	$0.0 \mathrm{~s}(\mathrm{~h}) \sim 6553.5 \mathrm{~s}$ (h)	0.0 s (h)	\cdots
PC-21	Acceleration/deceleration time of simple PLC reference 1	$0 \sim 3$	0	W
PC-22	Running time of simple PLC reference 2	$0.0 \mathrm{~s}(\mathrm{~h}) \sim 6553.5 \mathrm{~s}$ (h)	0.0 s (h)	\cdots
PC-23	Acceleration/deceleration time of simple PLC reference 2	$0 \sim 3$	0	*
PC-24	Running time of simple PLC reference 3	0.0 s (h) ~ 6553.5 s (h)	0.0 s (h)	\cdots
PC-25	Acceleration/deceleration time of simple PLC reference 3	$0 \sim 3$	0	W
PC-26	Running time of simple PLC reference 4	0.0 s (h) ~ 6553.5 s (h)	0.0s (h)	\cdots
PC-27	Acceleration/deceleration time of simple PLC reference 4	$0 \sim 3$	0	W
PC-28	Running time of simple PLC reference 5	$0.0 \mathrm{~s}(\mathrm{~h}) \sim 6553.5 \mathrm{~s}$ (h)	0.0s (h)	W
PC-29	Acceleration/deceleration time of simple PLC reference 5	$0 \sim 3$	0	\cdots
PC-30	Running time of simple PLC reference 6	0.0 s (h) ~ 6553.5 s (h)	0.0s (h)	\cdots
PC-31	Acceleration/deceleration time of simple PLC reference 6	$0 \sim 3$	0	*
PC-32	Running time of simple PLC reference 7	0.0 s (h) $\sim 6553.5 \mathrm{~s}$ (h)	0.0 s (h)	is
PC-33	Acceleration/deceleration time of simple PLC reference 7	$0 \sim 3$	0	N
PC-34	Running time of simple PLC reference 8	$0.0 \mathrm{~s}(\mathrm{~h}) \sim 6553.5 \mathrm{~s}$ (h)	0.0s (h)	N
PC-35	Acceleration/deceleration time of simple PLC reference 8	$0 \sim 3$	0	W
PC-36	Running time of simple PLC reference 9	0.0 s (h) ~ 6553.5 s (h)	0.0 s (h)	氺
PC-37	Acceleration/deceleration time of simple PLC reference 9	$0 \sim 3$	0	认
PC-38	Running time of simple PLC reference 10	0.0s (h) ~ 6553.5s (h)	0.0s (h)	H
PC-39	Acceleration/deceleration time of simple PLC reference 10	$0 \sim 3$	0	H
PC-40	Running time of simple PLC reference 11	0.0 s (h) ~ 6553.5 s (h)	0.0s (h)	N
PC-41	Acceleration/deceleration time of simple PLC reference 11	$0 \sim 3$	0	N
PC-42	Running time of simple PLC reference 12	0.0 s (h) ~ 6553.5 s (h)	0.0s (h)	N
PC-43	Acceleration/deceleration time of simple PLC reference 12	$0 \sim 3$	0	N
PC-44	Running time of simple PLC reference 13	0.0s (h) ~ 6553.5s (h)	0.0 s (h)	\cdots
PC-45	Acceleration/deceleration time of simple PLC reference 13	$0 \sim 3$	0	2
PC-46	Running time of simple PLC reference 14	0.0s (h) ~ 6553.5s (h)	0.0s (h)	ω
PC-47	Acceleration/deceleration time of simple PLC reference 14	$0 \sim 3$	0	*
PC-48	Running time of simple PLC reference 15	$0.0 \mathrm{~s}(\mathrm{~h}) \sim 6553.5 \mathrm{~s}$ (h)	0.0 s (h)	*

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
PC-49	Acceleration/deceleration time of simple PLC reference 15	$0 \sim 3$	0	N
PC-50	Time unit of simple PLC running	0: s (second) 1: h (hour)	0	N
PC-51	Reference 0 source	```0: Set by PC-00 1: AI1 2: AI2 3: AI3 4: Pulse reference 5: PID 6: Set by preset frequency (\(\mathrm{P} 0-08\)), modified via UP/DOWN key 7. keyboard with electrodeless potentiomter 8. keyboard with electrodeless potentiomter change rate 1 Hz```	0	*
Group Pd: Communication				
Pd -00	Baud rate	Units digit: MODBUS 0: 300BPS $1: 600 \mathrm{BPS}$ 2: 1200BPS $3: 2400 \mathrm{BPS}$ 4: 4800BPS $5: 9600 \mathrm{BPS}$ 6:19200BPS $7: 38400 \mathrm{BPS}$ 8:57600BPS $9: 115200 \mathrm{BPS}$	0005	N
Pd -01	MODBUS data format symbol	0 : No check <8-N-2> 1: Even parity check <8-E-1 $>$ 2: Odd parity check <8-O-1 $>$ 3: No check, data format $<8-\mathrm{N}-1>$ (Valid for MODBUS)	3	N
Pd -02	Local address	0: Broadcast address $1 \sim 247$ (MODBUS)	1	N
Pd-03	MODBUS response delay	$0 \sim 20 \mathrm{~ms}$ (Valid for MODBUS)	2	\cdots
Pd -04	Serial port communication timeout	$\begin{aligned} & \text { 0.0: Disabled } \\ & 0.1 \sim 60.0 \mathrm{~s} \end{aligned}$	0.0	N
Pd-05	MODBUS protocol selection	Units digit: MODBUS 0 : Non-standard MODBUS protocol 1: Standard MODBUS protocol	01	N
Pd-06	Current resolution read by communication	$\begin{aligned} & 0: 0.01 \mathrm{~A} \\ & 1: 0.1 \mathrm{~A} \\ & \hline \end{aligned}$	0	N
Group PE: Reserved				
Group PP: Function Parameter Management				
PP-00	User password	$0 \sim 65535$	0	\star
PP-01	Parameter initialization	0 : No operation 01: Restore factory parameters except motor parameters 02: Clear records 04: Backup present parameter of user 501: Restore parameter of user	0	\star

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
PP-02	Parameter display property	Units digit: Group U display 0 : Not displayed 1: Displayed Tens digit: Group D display 0 : Not displayed 1: Displayed	11	\star
PP-04	Selection of parameter modification	0: Disabled 1: Enabled	0	\cdots
Group D0: Torque Control and Restricting Parameters				
D0-00	Speed/Torque control selection	0: Speed control 1: Torque control	0	\star
D0-01	Torque reference source in torque control	0 : Set by D0-03 1: AI1 2: AI2 4: Pulse reference 5: Communication reference 6: MIN. (AI1, AI2) 7: MAX. (AI1, AI2) (Full range of values 1-7 corresponds to the digital setting of D0-03)	0	\star
D0-03	Torque digital setting in torque control	-200.0\% ~ 200.0\%	150.0\%	\star
D0-05	Forward max frequency in torque control	$0.00 \mathrm{~Hz} \sim \max$ frequency	50.00 Hz	\cdots
D0-06	Reverse max frequency in torque control	$0.00 \mathrm{~Hz} \sim \max$ frequency	50.00 Hz	*
D0-07	Acceleration time in torque control	0.00s $\sim 65000 \mathrm{~s}$	0.00s	N
D0-08	Deceleration time in torque control	0.00s $\sim 65000 \mathrm{~s}$	0.00s	*
Group D1: Reserved				
Group D2: Motor 1 Parameters				
D2-00	Motor type selection	1: Common asynchronous motor 2: Permanent magnetic synchronous motor	0	\star
D2-01	Rated motor power	$0.1 \sim 1000.0 \mathrm{~kW}$	Model dependent	\star
D2-02	Rated motor voltage	$1 \sim 2000 \mathrm{~V}$	Model dependent	\star
D2-03	Rated motor current	$\begin{aligned} & 0.01 \mathrm{~A} \sim 655.35 \mathrm{~A}(\mathrm{AC} \text { drive power } \leq 55 \mathrm{~kW}) \\ & 0.1 \mathrm{~A} \sim 6553.5 \mathrm{~A}(\mathrm{AC} \text { drive power }>55 \mathrm{~kW}) \\ & \hline \end{aligned}$	Model dependent	\star
D2-04	Rated motor frequency	$0.01 \mathrm{~Hz} \sim \max$ frequency	Model dependent	\star
D2-05	Rated motor rotational speed	$1 \sim 65535 \mathrm{RPM}$	Model dependent	\star
D2-06	Stator resistance (asynchronous motor)	$\begin{aligned} & \hline 0.001 \sim 65.535 \Omega(\text { AC drive power } \leq 55 \mathrm{~kW}) \\ & 0.0001 \sim 6.5535 \Omega(\mathrm{AC} \text { drive power }>55 \mathrm{~kW}) \end{aligned}$	Tuning parameter	\star
D2-07	Rotor resistance (asynchronous motor)	$0.001 \sim 65.535 \Omega$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.0001 \sim 6.5535 \Omega($ AC drive power $>55 \mathrm{~kW})$	Tuning parameter	\star
D2-08	Leakage inductive reactance (asynchronous motor)	$0.01 \sim 655.35 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.001 \sim 65.535 \mathrm{mH}$ (AC drive power $>55 \mathrm{~kW}$)	Tuning parameter	\star

Function Code	Name	Setting Range	Default	Change
D2-09	Mutual inductive reactance (asynchronous motor)	$0.1 \sim 6553.5 \mathrm{mH}$ (AC drive power $\leq 55 \mathrm{~kW}$) $0.01 \sim 655.35 \mathrm{mH}(\mathrm{AC}$ drive power $>55 \mathrm{~kW})$	Tuning parameter	\star
D2-10	No-load current (asynchronous motor)	$0.01 \mathrm{~A} \sim$ D2-03 (AC drive power $\leq 55 \mathrm{~kW}$) $0.1 \mathrm{~A} \sim \mathrm{D} 2-03(\mathrm{AC}$ drive power $>55 \mathrm{~kW}$)	Tuning parameter	\star
D2-27	Encoder line number	$1 \sim 65535$	1024	\star
D2-28	Encoder type	0: ABZ encoder 2: Rotational encoder	0	\star
D2-29	Speed feedback PG selection	0: Local PG 1: Extensive PG 2: Pulse input (DI5)	0	\star
D2-30	$A B$ sequence of $A B Z$ encoder	0: Forward 1: Reverse	0	\star
D2-31	Encoder install angle	$0.0 \sim 359.9{ }^{\circ}$	0°	
D2-34	Rotational encoder pole number	$1 \sim 65535$	1	\star
D2-36	Speed feedback PG offline detect time	0.0s: No action $0.1 \mathrm{~s} \sim 10.0 \mathrm{~s}$	0.0s	\star
D2-37	Auto-tuning selection	0 : No auto-tuning 1: Asynchronous motor partly static auto-tuning 2: Asynchronous motor completely dynamic auto-tuning 3: Asynchronous motor static dynamic auto-tuning	0	\star
D2-38	Speed loop proportional gain 1	$1 \sim 100$	30	*
D2-39	Speed loop integral time 1	$0.01 \sim 10.00 \mathrm{~s}$	0.50s	\cdots
D2-40	Switchover frequency 1	$0.00 \sim$ D2-43	5.00 Hz	*
D2-41	Speed loop proportional gain 2	$1 \sim 100$	20	*
D2-42	Speed loop integral time 2	$0.01 \sim 10.00 \mathrm{~S}$	1.00 s	W
D2-43	Switchover frequency 2	D2-02 ~ max output frequency	10.00 Hz	*
D2-44	Vector control slip gain	50\% ~ 200\%	100\%	*
D2-45	SVC torque filter constant	$1 \sim 31$	28	3
D2-47	Torque limit source in speed control	0: Set by D2-10 1: AI12: AI2 4: Pulse (DI5) 5: AI3 5: by communication 6: Min. (AI1, AI2) 7: Max. (AI1, AI2) Full scale of 1-7 corresponds to D2-48. l	0	*
D2-48	Digital setting of torque upper limit in speed control	0.0\% ~ 200.0\%	150\%	\cdots

Chapter 4 Function Parameter Table

Function Code	Name	Setting Range	Default	Change
D2-49	Torque limit source in speed control (generation)	```0: Set by D2-10 (same for generating and electric driving) 1: AI1 2: AI2 3: AI3 : Pulse (DI5) : Set by communication : Min. (AI1, AI2) 7: Max. (AI1, AI2) Full scale of 1-7 corresponds to D2-12.```	0	W
D2-50	Digital setting of torque upper limit in speed control (generation)	0.0\% ~ 200.0\%	150.0\%	N
D2-51	Excitation adjustment proportional gain	$0 \sim 60000$	2000	\star
D2-52	Excitation adjustment integral gain	$0 \sim 60000$	1300	i
D2-53	Torque adjustment proportional gain	$0 \sim 60000$	2000	E
D2-54	Torque adjustment integral gain	$0 \sim 60000$	1300	\pm
D2-55	Speed loop integral property	Units digit: integral separation 0: Disabled 1: Enabled	0	N
D2-59	Weak magnetic field max torque coefficients	$50 \sim 200 \%$	100\%	N
D2-60	Power generation limit enable	0 : Invalid 1: Effect all the time 2: Effect during constant speed 3: Effect during deceleration	0	H
D2-61	Upper limit of power generation	0.0\% ~ 200.0\%	Model dependent	3
D2-62	Motor 2 control mode	$\begin{aligned} & \text { 0: SVC } \\ & \text { 1: FVC } \\ & \text { 2: V/F } \\ & \hline \end{aligned}$	0	\star
D2-63	Motor 2 acceleration/ deceleration time selection	0: Same as motor 1 2: Acc/dec time 2 3: Acc/dec time 3 4: Acc/dec time 4	0	\%
D2-64	Motor 2 torque lift	0.0% : Auto torque lift $0.1 \% \sim 30.0 \%$	Model dependent	H
D2-66	Motor 2 shock suppression gain	$0 \sim 100$	40	*
Group D5: Control optimization parameters				
D5-00	DPWM switchover upper limit frequency	$5.00 \mathrm{~Hz} \sim \max$ frequency	8.00 Hz	N
D5-01	PWM adjust method	0: Asynchronous modulation 1: Synchronous modulation	0	*
D5-02	Dead zone compensation mode	0 : No compensation 1: Compensation mode 1	1	\%
D5-03	Random PWM depth	0: Random PWM invalid $1 \sim 10$: PWM load frequency random depth	0	N
D5-04	Fast current limit enable	0: Disable 1: Enable	1	N
D5-05	Current detect compensation	$0 \sim 100$	0	\star

Function Code	Name	Setting Range	Default	Change
D5-06	Under-voltage point setting	$200 \sim 2000 \mathrm{~V}$	$\begin{gathered} 380 \mathrm{~V}: \\ 350 \mathrm{~V} \\ 220 \mathrm{~V}: \\ 200 \mathrm{~V} \end{gathered}$	*
D5-08	Dead time adjustment	100\% ~ 200\%	150\%	\star
D5-09	Over-voltage point setting	$200 \sim 2200 \mathrm{~V}$	Model dependent	\star
Group D6: AI Curve Setting				
D6-00	AI curve 4 minimum input	-10.00V ~ D6-02	0.00 V	\cdots
D6-01	Corresponding setting of AI curve 4 minimum input	-100.0\% ~ 100.0\%	0.0\%	N
D6-02	AI curve 4 turning point 1 input	D6-00 ~ D6-04	3.00 V	\cdots
D6-03	Corresponding setting of AI curve 4 turning point 1 input	0.0\% ~ 100.0\%	30.0\%	\star
D6-04	AI curve 4 turning point 2 input	D6-02~ D6-04	6.00 V	N
D6-05	Corresponding setting of AI curve 4 turning point 2 input	-100.0\% ~ 100.0\%	60.0\%	\cdots
D6-06	AI curve 4 max input	D6-04~10.00V	10.00 V	N
D6-07	Corresponding setting of AI curve 4 max input	-100.0\% ~ 100.0\%	100.0\%	W
D6-08	AI curve 5 minimum input	$-10.00 \mathrm{~V} \sim \mathrm{D} 6-10$	$-10.00 \mathrm{~V}$	\cdots
D6-09	Corresponding setting of AI curve 5 minimum input	-100.0\% ~ 100.0\%	-100.0\%	\cdots
D6-10	AI curve 5 turning point 1 input	D6-08 ~ D6-12	$-3.00 \mathrm{~V}$	\cdots
D6-11	Corresponding setting of AI curve 5 turning point 1 input	-100.0\% ~ 100.0\%	-30.0\%	N
D6-12	AI curve 5 turning point 2 input	D6-10 ~ D6-14	3.00 V	N
D6-13	Corresponding setting of AI curve 5 turning point 2 input	-100.0\% ~ 100.0\%	30.0\%	N
D6-14	AI curve 5 max input	D6-12 ~+10.00V	10.00 V	*
D6-15	Corresponding setting of AI curve 5 max input	-100.0\% ~ 100.0\%	100.0\%	*
D6-24	Jump point of AI1 input corresponding setting	-100.0\% ~ 100.0\%	0.0\%	W
D6-25	Jump amplitude of AI1 input corresponding setting	0.0\% ~ 100.0\%	0.5\%	W
D6-26	Jump point of AI2 input corresponding setting	-100.0\% ~ 100.0\%	0.0\%	*
D6-27	Jump amplitude of AI2 input corresponding setting	0.0\% ~ 100.0\%	0.5\%	N
D6-28	Jump point of AI3 input corresponding setting	-100.0\% ~ 100.0\%	0.0\%	N
D6-29	Jump amplitude of AI3 input corresponding setting	0.0\% ~ 100.0\%	0.5\%	*
Group D8 Point-to-point communication				
D8-00	Point to point communication function selection	0 : Invalid 1: Valid	0	3

Function Code	Name	Setting Range	Default	Change
D8-01	Selection of master/ slave	0: Master 1: Slave	0	N
D8-02	Slave command follow master-slave info exchange	Units digit: Slave command follow 0 : Slave running, not follow master command 1: Slave running, follow master command. Tens digit: Slave fault into transmit 0 : Slave fault into no transmit 1: Slave fault into transmit Hundreds digit: Master report slave offline 0 : Slave offline, master no report fault 1: Slave offline, master report fault (ERR16)	011	\star
D8-03	Slave receive data function selection	0 : Running frequency 1: Target frequency	0	*
D8-04	Zero offset of received data	-100.00\% ~ 100.00\%	0.00\%	\star
D8-05	Gain of received data	-10.00~100.00	1.00	\star
D8-06	Detect time of point-to-point communication interrupt	$0.0 \sim 10.0 \mathrm{~s}$	1.0s	W
D8-07	Master send data cycle of point-to-point communication	$0.001 \sim 10.000$ s	0.001s	N
D8-08	Synchronous display frequency range	$0.20 \sim 10.00 \mathrm{~Hz}$	0.50 Hz	N
Group DC AIAO correction				
DC-00	AI1 measured voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-01	AI1 display voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-02	AI1 measured voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-03	AI1 display voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	\%
DC-04	AI2 measured voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	H
DC-05	AI2 display voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	\%
DC-06	AI2 measured voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	$\stackrel{3}{3}$
DC-07	AI2 display voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-12	AO1 target voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-13	AO1 display voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-14	AO1 measured voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-15	AO1 display voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-16	AO2 measured voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-17	AO2 display voltage 1	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N
DC-18	AO 2 measured voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	㙰
DC-19	AO2 display voltage 2	$-10.00 \mathrm{~V} \sim 10.000 \mathrm{~V}$	Factory calibration	N

